Lightning Sparking More Boreal Forest Fires

Our Research Brief this month covers a new NASA-funded study led by Sander Veraverbeke of Vrije Universiteit  in Amsterdam which found lightning storms to be a main driver of recent large fire seasons in Alaska and Canada.  Results of the study are published in the July, 2017 issue of Nature Climate Change.

nclimate_Cover_JUL17

July 2017 Nature Climate Change

MODIS (Moderate-Resolution Imaging Spectroradiometer) satellite images and data from ground-based lightning networks were employed to study fire ignitions. Sander’s analysis found increases of between two and five percent a year in the number of lightning-ignited fires since 1975. Veraverbeke said that the observed trends are consistent with climate change, with higher temperatures linked to both more burning and more thunderstorms.

Study co-author Brendan Rogers at Woods Hole Research Center in Massachusetts says these trends are likely to continue. “We expect an increasing number of thunderstorms, and hence fires, across the high latitudes in the coming decades as a result of climate change.” This is confirmed in the study by different climate model outputs.

Charles Miller of NASA’s Jet Propulsion Laboratory in California, another co-author, said while data from Alaska’s agency lightning networks were critical to this study, it is challenging to use these data to verify trends because of continuing network upgrades. “A spaceborne sensor that provides lightning data that can be linked with fire dynamics would be a major step forward,” he said. Such a sensor exists already– NASA’s spaceborne Optical Transient Detector –but it’s geostationary orbit limits its utility for high latitudes.

The researchers found that the fires are creeping farther north, near the transition from boreal forests to Arctic tundra. “In these high-latitude ecosystems, permafrost soils store large amounts of carbon that become vulnerable after fires pass through,” said co-author James Randerson of the University of California, Irvine. “Exposed mineral soils after tundra fires also provide favorable seedbeds for trees migrating north under a warmer climate.”

The Alaska Fire Science Consortium at the University of Alaska, Fairbanks, also participated in the study, and provides this 2-page Research Brief executive summary.

Citation: Veraverbeke, S., B.M. Rogers, M.L. Goulden, R.R. Jandt, C.E. Miller, E.B. Wiggins and J.T. Randerson. Lightning as a major driver of recent large fire years in North American boreal forests. Nature Climate Change 7: 529–534 (2017). DOI: 10.1038/nclimate3329

Future Fire Costs in Alaska

April Melvin of EPA’s National Climate Change Division has spent some time in the field in Alaska. In a just-released publication her research team takes a look at how firefighting costs in Alaska are likely to change through the next several decades.

pumpkin-2004-cylewold-pnw

“Pumpkin” water bladder preparing burnout on the Chicken fire 2004. Photo by Cyle Wold, USFS-PNW.

They use the ALFRESCO  model developed at UAF, which simulates fire ignition and spread (annual timesteps) under different climate projections in 100-km grid cells. Read their paper (citation below) for all the details, but in a nutshell they found:  1) it’s hard to nail down precise fire cost records in the multi-jurisdictional setting!  2) Fire costs go up in the future and the biggest expenditures will be in the Full fire protection option.   3) by 2030, predicted federal fire suppression costs (not including base–support and pre-suppression) will average $27-47M annually under the RCP 4.5 (moderate emissions) climate projection. That compares to about $31M on average from 2002-2013.  Adding in state costs boosts this to about $116M total firefighting cost for Alaska assuming the state costs are still roughly 68% of the total cost.  Again this does not include base operating costs.  The paper provides some good analysis for fire protection agencies to take to the bank.  Or at least to the Legislature!

Citation: Melvin, A.M., Murray, J., Boehlert, B. et al. 2017. Estimating wildfire response costs in Alaska’s changing climate.   Climate Change:  p 1-13.  doi:10.1007/s10584-017-1923-2.