Alaska Tundra Fires on the Rise

Smokes from East Fork Fire rise from tundra along the Yukon River around St. Mary’s, 6-12-2022. Credit: Jacob Welsh, AK IMT

Five years ago, Adam Young used paleofire evidence to hypothesize how climate warming would affect future tundra fires in Alaska.  Adam basically predicted a big increase in tundra fire occurrence if the average July temperature warmed above a threshold of 13.4°C (56°F:  Young, et al. 2017). This year, Arif Masrur et al. (2022) provided important evidence corroborating Adam’s theory using modern fire and climate records.  The research team use machine learning to determine the relative importance of various climate, prior burn history, and biophysical values on tundra fire occurrence and size. They also tapped the rich collection of field plot data collected by the National Park Service and other management agencies for vegetation characteristics and verification of reburn status.  Arif did, indeed, find a strong increase in recent Alaskan tundra fires concurrent with much warmer summers.  Annual tundra burned area has almost doubled and reburned area has increased by 61% since 2010!  The study also revealed a small but significant feedback effect of previous tundra fires on reburning, validating management strategies like using prescribed fire to reduce wildfire threat near villages.

Figure from Adam Young (2017) showing where he predicted shorter Fire Rotation Periods (more frequent fire) in Alaska with climate warming.

Citations:
Masrur, A., Taylor, A., Harris, L., Barnes, J., and Petrov, A. 2022. Topography, climate and fire history regulate wildfire activity in the Alaskan tundra. Journal of Geophysical Research: Biogeosciences, 127, e2021JG006608. Read the article HERE:  https://doi.org/10.1029/2021JG006608

Young, AM, Higuera PE, Duffy PA and Hu FS. 2017. Climatic thresholds shape northern high-latitude fire regimes and imply vulnerability to future climate change Ecography 40:606–17.  Slides and recording from Adam’s 2019 presentation on this study HERE:  https://www.frames.gov/catalog/60348

Figure 2, Masrur, et al. 2022. [Tundra fire] Regime shift detected in mean annual fire frequency based on AICC fire perimeter data. The detections were performed with the target significance level p = 0.05 and cut-off length l = 20.

The Face of a Scientist

The face of a scientist: does that conjure an image of a certain gender, race, and age?  Albert Einstein perhaps?  Those stereotypes are changing:  meet Dr. Yaping Chen–a rising star of science with a spectacular track record.  The last 3 years she has come up with one mind-boggling revelation after another about how fire works in the Alaska tundra.  After a MS degree in environmental engineering in China, Dr. Chen completed her PhD in the lab of the venerable Dr. Feng Sheng Hu at the University of Illinois.  I first met her presenting a poster on the Nimrod Hill fire (Imuruk Lake, on the Seward Peninsula) at an American Geophysical Union meeting in 2019.  The work was novel, ingenious, and suggestive of new ways to study fires with new computational and remote sensing tools. That was just the tip of the iceberg–or the thermokarst, if you will! Since then Dr. Chen has published numerous diverse research studies improving our understanding of dueling post-fire successional trajectories in tundra, improved burn severity mapping of legacy tundra fires, and fire regime effects on carbon balance.  Her most recent paper outlines the role of tundra fire vs. climate warming in thawing permafrost in Alaska tundra statewide!  If you’ve missed any of these important papers for your collection, links are included below.  Now Dr. Chen is a post-doctoral researcher at the Virginia Institute of Marine Science, continuing her work on unraveling impacts of climate change.  Thank you, Dr. Chen for all you’ve revealed to us in Alaska!

Fire hastens permafrost collapse in Arctic tundra: Short AAAS summary of Chen’s most recent paper>>>

Below: Graphical Abstract from Chen, et al. 2021 One Earth publication, illustrating the increase in thermokarst rates across arctic Alaska, and highlighting impact of fire in hastening thaw.

Everything you wanted to know about fire behavior analysis in Alaska

In one handy paper that came out in 2021, Alaska fire analysts Robert “Zeke” Ziel and Chris Moore have compiled how-to’s, resources, fuel model-to-vegetation type crosswalks, and pro tips and secrets. The reference takes you all the way from introduction to the Canadian Forest Fire Danger Rating system to how to conduct an analysis of fire behavior in WFDSS (Wildfire Decision Support System used by fire agencies). Included are such perplexing topics as how to estimate live and dead fuel moisture, what are the available short-term and near-term fire models, what do do about winds, which National fuel models require “tweaking” in Alaska, and sources of vegetation map products and satellite imagery. Fire behavior analysts definitely want to review this before the fire season and make sure it’s handy in their kit if they plan to work in Alaska, and researchers will also find this an extremely useful state-of-the-art comprehensive review of how fire behavior analysis currently works in practice.

Moore, Chris; Ziel, Robert. 2021. Fire Analysis in Alaska: A Quick Reference. Unpublished report. Alaska Wildland Fire Coordinating Group. 47 p.

From the authors: “Alaska is faced with a unique fire management problem that has been handled in an interagency way for more than 30 years. The evolution of fire management has led to a different approach in interagency cooperation; weather data management; fire behavior and fire danger implementation; GIS management; and overall fire suppression strategies. This guide is intended to provide standardized inputs for initial analysis; these are not hard and fast rules to be strictly followed throughout an incident.”

Monitoring winds during a prescribed fire.

Research uncovers new twists on fire behavior

Incident fire behavior analysts predicted the 2011 Las Conchas fire would calm down at night, but instead they witnessed a night-time blow-up between 10 p.m. and 3 a.m. where 35-ft high “rolling barrels of fire” advanced rapidly downhill, quadrupling the fire’s size.

pillar-of-fire.jpg

Article in July-Aug 2017 Popular Science by Kyle Dickman, sheds light on extreme fire behavior.

Rod Linn at the fire Los Alamos National Laboratory has been studying wildfires for 22 years, using computational models including weather and topography to explain unexpected behavior.  In a recent Popular Science article he sheds light on some very interesting scenarios that caught the analysts off guard, including how an inversion developing in the evening spilled out of the Valles Grande basin like an overflowing bathtub and spawned the 26 ft/sec downslope night winds that blew up the Las Conchas fire.  The article is very readable and sheds light on several other species of extreme fire behavior that will be of interest to anyone on the fireline.  Pick up the July/August Popular Science or read it for free online here:  https://www.popsci.com/las-conchas-wildfire-pillar-of-fire

P.S. Rod also published a series of articles for firefighters from the Los Alamos Lab and they are online.  Here’s the link to the first one:  Computer modeling helps us learn to live with wildfire.

 

Do bark beetle outbreaks really affect burning?

Capture-hansen2016fig2

 

It has long been assumed that bark beetle outbreaks on the Kenai lead to increased fire danger, even though beetle disturbance has been shown to have mixed effects on crown fire potential, fuel profiles and burn severity in the Rocky Mountains.  Winslow Hansen, doctoral candidate at the University of Wisconsin, recently published an analysis of beetle outbreaks and fire on the Kenai Peninsula between 2001-2014 (Hansen et al. 2016).  He looked at effects in pure white spruce stands–where duration of beetle attacks is longer and mortality greater–and in mixed white and black spruce stands common on the northern peninsula, where attacks are less severe.  His analysis indicates mixed effects:  severely damaged white spruce stands did not demonstrate increased fire occurrence (instead, % canopy cover appeared to drive likelihood of burning) while the mixed white/black spruce stands did show a positive correlation with beetle outbreaks and fire.  Winslow explores the reasons for this in his relatively short article:  worth reading.  You may remember Winslow from his previous work on beetles/fire effects and property values on the Kenai (recorded MS Thesis defense) and climate effects on fire regime (recorded 2015 presentation).

Citation:  Hansen, W.D, F.S. Chapin III, H.T. Naughton, T.S. Rupp, and D. Verbyla. 2016. Forest-landscape structure mediates effects of a spruce bark beetle (Dendroctonus rufipennis) outbreak on subsequent likelihood of burning in Alaskan boreal forest.  Forest Ecology and Management 369: 38–46.

Fuel Treatments Aid 2015 Firefighting Efforts in Alaska

A new report by USFWS Kenai Refuge fire staff (Nate Perrine) examines

Capture-cardst

areas where the 2015 Card Street fire intersected completed fuels treatments. He utilized IFTDSS (Interagency Fuels Treatment Decision Support System) modeling to analyze the treatment effect on fire behavior, and also documented post fire effects within the treated areas. This well-illustrated discussion includes recommendations for future treatments and analyses–a must-read for fire fuels specialists in Alaska! Click below to download a pdf.

The Effects and Use of Fuel Treatments during the Card Street Fire

Webinar Dec 20th- What is Live Fuel Moisture? A New Look at the Combustion of Live Plants

Fire in PIMA LEPA_JBarnes_250x195

Image from Jennifer Barnes, National Park Service

Date: Thursday, December 20, 2012
Time: 10:00 – 11:30 AM (AK Time)

Link to recording <HERE>

Presented by:  Matt Jolly, PhD
Research Ecologist, USFS
Fire, Fuel and Smoke Science Program
Missoula Fire Sciences Laboratory

Live fuel moisture is measured frequently throughout the country as an indicator of potential fire behavior but little is known about the primary factors that drive their seasonal variations. Dr. Matt Jolly will delve into the interactive factors that control live fuel moisture and will discuss some of the potential implications of these factors on seasonal variations in the fire potential of living plants. Ultimately, he will show how the interactions between the water content of the foliage and seasonal changes in the leaf’s dry weight combine to influence calculated live fuel moisture and its flammability.

Read more about Dr. Jolly’s work with living plants and fire and the Missoula Fire Sciences Lab.

Related Resources:
Foliar moisture content input in the Canadian Forest Fire Behavior Prediction System for areas outside of Canada
Martin E. Alexander, 2010

Assessing the effect of foliar moisture on the spread rate of crown fires
Martin E. Alexander and Miguel G. Cruz, 2012

Join The Webinarr:

Click HERE to join this webinar (http://osu-pilot-conc.adobeconnect.com/dec202012/).

No pre-registration required.  This link will be active at 9:45 am AK Time on Dec 20th. Select “Enter as a Guest” and provide your name where prompted to participate.

Continue reading

More Catastrophic Fires Ahead for Western U.S.

News from Science Daily:

More Catastrophic Fires Ahead for Western U.S..

Read the Full Journal Article:

J. R. Marlon, P. J. Bartlein, D. G. Gavin, C. J. Long, R. S. Anderson, C. E. Briles, K. J. Brown, D. Colombaroli, D. J. Hallett, M. J. Power, E. A. Scharf, M. K. Walsh. PNAS Plus: Long-term perspective on wildfires in the western USA. Proceedings of the National Academy of Sciences, 2012; DOI: 10.1073/pnas.1112839109

Direct from the Source:

Inside NAU (Northern Arizona University)

Aside

Listen to how Rod Norum faced the challenge of a major fire burning toward the Alaska Pipeline–including a “monster” tactical 26-mile-long backfire.

Direct link to this video:  http://youtu.be/2oLTxhLQd-E?t=3s

Visit the Wildland Fire Lessons Learned Center for more videos from the experts.

Learning from the experts: Watch Rod Norum discuss his experience with fuels and fire behavior in Alaska